问题 填空题

设A=1+2x4,B=2x3+x2,x∈R,则A,B的大小关系是A≥BA≥B.

答案

∵A-B=1+2x4-2x3-x2=2x3(x-1)-(x2-1)

=(x-1)(2x3-x-1)

=(x-1)(x3-x+x3-1)

=(x-1)[x(x2-1)+(x-1)(x2+x+1)]

=(x-1)2(2x2+2x+1)

∵(x-1)2≥0,2x2+2x+1>0,

∴A-B≥0,即A≥B.

答案:A≥B

单项选择题
填空题