问题
解答题
设f(x)=x2-x+k,log2f(a)=2,f(log2a)=k,(a≠1)
(1)求f(x)
(2)求f(log2x)的最小值及相应的x值.
(3)x取何值时f(log2x)>f(1)且log2f(x)<f(1).
答案
(1)由条件知
⇒f(a)=4 log2a•(log2a-1)=0
∴f(x)=x2-x+2,a=2 k=2
(2)f(log2x)=log22x-log2x+2=(log2x-
)2+1 2
,7 4
当log2x=
,即x=1 2
时,在最小值2
.7 4
(3)由log22x-log2x>0 log2(x2-x+2)<2
⇒log2x>1或log2x<0 0<x2-x+2<4
⇒x∈(0,1).