问题
解答题
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:
(I) 取出的3件产品中一等品件数X的分布列和数学期望;
(II) 取出的3件产品中一等品件数多于二等品件数的概率。
答案
(Ⅰ)解:由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果数为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X="k)=" ,k=0,1,2,3.
所以随机变量X的分布列是
X | 0 | 1 | 2 | 3 |
P |
(Ⅱ)解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2,”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3而
P(A2)="P(X=2)=" ,P(A3)="P(X=3)=" ,
所以取出的3件产品中一等品件数多于二等品件数的概率为
P(A)=P(A1)+P(A2)+P(A3)= ++=