问题
解答题
已知函数f(x)=log2(x+m),m∈R
( I)若f(1),f(2),f(4)成等差数列,求m的值;
( II)若a、b、c是两两不相等的正数,且a、b、c依次成等差数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
答案
(1)因为f(1),f(2),f(4)成等差数列,所以2f(2)=f(1)+f(4),
即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得
(2+m)2=(1+m)(4+m),得m=0.
(2)若a、b、c是两两不相等的正数,且a、b、c依次成等差数列,
设a=b-d,c=b+d,(d不为0);
f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2(a+m)(c+m) (b+m)2
因为(a+m)(c+m)-(b+m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0
所以:0<(a+m)(c+m)<(b+m)2,
得0<
<1,得log2(a+m)(c+m) (b+m)2
<0,(a+m)(c+m) (b+m)2
所以:f(a)+f(c)<2f(b).