问题 解答题
(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:
 
8环
9环
10环

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率;
(Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.
答案

(1) 0.08.

(2) 甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上的概率为

题目分析:解:(Ⅰ)由已知甲射击击中8环的概率为0.2,乙射击击中9环的概率为0.4,则所求事件的概率为 P=0.2×0.4=0.08.                  3分

(Ⅱ)记“甲运动员射击一次,击中9环以上(含9环)”为事件A,“乙运动员射击1次,击中9环以上(含9环)”为事件B,则

P(A)=0.35+0.45=0.8,P(B)=0.35+0.4=0.75.                     5分

“甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上(含9环)”包含甲击中2次、乙击中1次,与甲击中1次、乙击中2次两个事件,这两个事件为互斥事件.

甲击中2次、乙击中1次的概率为

;             8分

甲击中1次、乙击中2次的概率为

.              11分

故所求概率为 .                            12分

答:甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上的概率为

点评:解决的关键是对于概率的加法公式和乘法公式的准确运用,属于基础题。

单项选择题
问答题 简答题