问题 解答题
设f(k)是满足不等式log2x+log2(5•2k-1-x)≥2k(k∈N*)的自然数x的个数.
(1)求f(k)的函数解析式;
(2)Sn=f(1)+f(2)+…+f(n),求Sn
(3)设Pn=2n+1+n-3,由(2)中Sn及Pn构成函数TnTn=
log2(Sn-Pn)
log2(Sn+1-Pn+1)-10.5
,求Tn的最小值与最大值.
答案

(1)∵log2x+log2(5•2k-1-x)≥2k,∴log2(5•2k-1x-x2)≥2k=log222k

x>0
5•2k-1-x>0
x(5•2k-1-x)≥22k

解得得2k-1≤x≤4•2k-1

∴f(k)=4•2k-1-2k-1+1=3•2k-1+1(k∈N*

(2)sn=f(1)+f(2)+…+f(n)=3(20+21+22+…+2n-1)+n

=

3(1-2n)
1-2
+n=3•2n+n-3;

(3)Tn=

log2(3•2n+n-3-2n+1-n+3)
log2(3•2n+1+n+1-3-2n+2-n-1+3)-10.5

=

n
n+1-10.5
=
n
n-9.5

=1+

9.5
n-9.5

则n=9时有最小值T9=-18;n=10时有最大值T10=20.

问答题 简答题
单项选择题