问题
解答题
设f(k)是满足不等式log2x+log2(5•2k-1-x)≥2k(k∈N*)的自然数x的个数. (1)求f(k)的函数解析式; (2)Sn=f(1)+f(2)+…+f(n),求Sn; (3)设Pn=2n+1+n-3,由(2)中Sn及Pn构成函数Tn,Tn=
|
答案
(1)∵log2x+log2(5•2k-1-x)≥2k,∴log2(5•2k-1x-x2)≥2k=log222k,
∴
,x>0 5•2k-1-x>0 x(5•2k-1-x)≥22k
解得得2k-1≤x≤4•2k-1.
∴f(k)=4•2k-1-2k-1+1=3•2k-1+1(k∈N*)
(2)sn=f(1)+f(2)+…+f(n)=3(20+21+22+…+2n-1)+n
=
+n=3•2n+n-3;3(1-2n) 1-2
(3)Tn=log2(3•2n+n-3-2n+1-n+3) log2(3•2n+1+n+1-3-2n+2-n-1+3)-10.5
=
=n n+1-10.5 n n-9.5
=1+
,9.5 n-9.5
则n=9时有最小值T9=-18;n=10时有最大值T10=20.