已知函数f(x)=loga(2-x)+loga(x+2)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-2,求a的值.
(1)要使函数有意义:则有
,解之得:-2<x<2,…(2分)2-x>0 x+2>0
所以函数的定义域为:(-2,2)…(3分)
(2)令f(x)=loga(2-x)+loga(x+2)=0,得-x2+4=1,即x=±
…(5分)3
∵±
∈(-2,2),∴函数f(x)的零点是±3
…(6分)3
(3)函数可化为:f(x)=loga(2-x)+loga(x+2)=loga(-x2+4)(0<a<1)
∵-2<x<2,∴0<-x2+4≤4…(7分)
∵0<a<1,loga(-x2+4)≥loga4,即f(x)min=loga4…(8分)
由loga4=-2,得a-2=4,∴a=
…(9分)1 2