问题
填空题
已知函数f(x)=
|
答案
∵f(x)是R上的单调递增函数,
∴当x>1时,对数函数y=logax是增函数,得a>1
当x≤1时,一次函数y=(a-3)x-3是增函数,得a-3>0,∴a>3
取交集,得a>3
又loga1≥(a-3)×1-3,解之得a≤6
∴3<a≤6
故答案为:3<a≤6
已知函数f(x)=
|
∵f(x)是R上的单调递增函数,
∴当x>1时,对数函数y=logax是增函数,得a>1
当x≤1时,一次函数y=(a-3)x-3是增函数,得a-3>0,∴a>3
取交集,得a>3
又loga1≥(a-3)×1-3,解之得a≤6
∴3<a≤6
故答案为:3<a≤6