问题 解答题
为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
答案

(1)∵在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

3
5

∴在50人中,喜爱打篮球的有

3
5
×50=30,

∴男生喜爱打篮球的有30-10=20,

列联表补充如下:

喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050

(2)∵K2=

50×(20×15-10×5)2
25×25×30×20
≈8.333>7.879

∴有99.5%的把握认为喜爱打篮球与性别有关.

(3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,

其一切可能的结果组成的基本事件有5×3×2=30种,如下:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B3,C2),(A3,B2,C2),(A3,B3,C1),(A4,B1,C1),(A4,B1,C2),(A4,B2,C1),(A4,B2,C2),(A4,B3,C1),(A4,B3,C2),(A5,B1,C1),(A5,B1,C2),(A5,B2,C1),(A5,B2,C2),(A5,B3,C1),(A5,B3,C2),

基本事件的总数为30,

用M表示“B1,C1不全被选中”这一事件,

则其对立事件

.
M
表示“B1,C1全被选中”这一事件,

由于

.
M
由(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),(A4,B1,C1),(A5,B1,C1

5个基本事件组成,

P(

.
M
)=
5
30
=
1
6

∴由对立事件的概率公式得P(M)=1-P(

.
M
)=1-
1
6
=
5
6

单项选择题
单项选择题