问题
解答题
已知a>2,求证:log(a-1)a>loga(a+1)
答案
证明(法一):∵log(a-1)a-loga(a+1)=
-loga(a+1)1 loga(a-1)
=
.1-(loga(a-1))•(loga(a+1)) loga(a-1)
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)•loga(a+1)≤[
]2loga(a-1)+loga(a+1) 2
=
<[loga(a2-1)]2 4
=1[logaa2]2 4
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
=log(a-1)a loga(a+1)
=1 loga(a-1) loga(a-1) 1 (loga(a-1))•(loga(a+1))
由法1可知:loga(a-1)•loga(a+1)≤[
]2loga(a-1)+loga(a+1) 2
=
<[loga(a2-1)]2 4
=1[logaa2]2 4
∴
>1.1 loga(a-1)•loga(a+1)
故命题得证