问题
解答题
设各项均为正数的数列{an}和{bn}满足5an,5bn,5an+1成等比数列,lgbn,lgan+1,lgbn+1成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.
答案
∵5an,5bn,5an+1成等比数列,
∴(5an)2=5bn•5an+1,即2bn=an+an+1.①
又∵lgbn,lgan+1,lgbn+1成等差数列,
∴2lgan+1=lgbn+lgbn+1,即an+12=bn•bn+1.②
由②及ai>0,bj>0(i、j∈N*)可得
an+1=
.③bn•bn+1
∴an=
(n≥2).④bn-1bn
将③④代入①可得2bn=
+bn-1•bn
(n≥2),bn•bn+1
∴2
=bn
+bn-1
(n≥2).bn+1
∴数列{
}为等差数列.bn
∵b1=2,a2=3,a22=b1•b2,∴b2=
.9 2
∴
=bn
+(n-1)(2
-9 2
)2
=
(n+1)(n=1也成立).1 2
∴bn=
.(n+1)2 2
∴an=
=bn-1•bn
•n2 2 (n+1)2 2
=
(n≥2).n(n+1) 2
又当n=1时,a1=1也成立.
∴an=
.n(n+1) 2