问题 解答题

设各项均为正数的数列{an}和{bn}满足5an5bn5an+1成等比数列,lgbn,lgan+1,lgbn+1成等差数列,且a1=1,b1=2,a2=3,求通项an、bn

答案

∵5an,5bn,5an+1成等比数列,

∴(5an2=5bn•5an+1,即2bn=an+an+1.①

又∵lgbn,lgan+1,lgbn+1成等差数列,

∴2lgan+1=lgbn+lgbn+1,即an+12=bn•bn+1.②

由②及ai>0,bj>0(i、j∈N*)可得

an+1=

bnbn+1
.③

∴an=

bn-1bn
(n≥2).④

将③④代入①可得2bn=

bn-1bn
+
bnbn+1
(n≥2),

∴2

bn
=
bn-1
+
bn+1
(n≥2).

∴数列{

bn
}为等差数列.

∵b1=2,a2=3,a22=b1•b2,∴b2=

9
2

bn
=
2
+(n-1)(
9
2
-
2

=

1
2
(n+1)(n=1也成立).

∴bn=

(n+1)2
2

∴an=

bn-1bn
=
n2
2
(n+1)2
2

=

n(n+1)
2
(n≥2).

又当n=1时,a1=1也成立.

∴an=

n(n+1)
2

多项选择题
单项选择题