问题 解答题

(1)已知2<x<3,-2<y<-1,求x+y、x-y、xy的取值范围;

(2)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.

答案

(1)因为2<x<3,-2<y<-1,

所以0<x+y<2;1<-y<2,

3<x-y<5;

∴2<-xy<6,

∴-6<xy<-2;

所以x+y、x-y、xy的取值范围分别是(0,2),(3,5),(-6,-2).

(2)(x2+y2)(x-y)-(x2-y2)(x+y)

=x3-x2y+xy2-y3-x3-x2y+xy2+y3

=2xy2-2x2y

=2xy(y-x)

∵x<y<0∴xy>0,y-x>0,

∴2xy(y-x)>0,

∴(x2+y2)(x-y)>(x2-y2)(x+y)

名词解释
问答题 简答题