问题 解答题

设f(x)=x2+bx+c(b、c为常数),方程f(x)=x的两个实数根为x1、x2,且满足x1>0,x2-x1>1.

(Ⅰ)求证:b2>2(b+2c);

(Ⅱ)设0<t<x1,比较f(t)与x1的大小.

答案

(Ⅰ)由f(x)=x,得x2+(b-1)x+c=0.

∴x1+x2=1-b,x1x2=c.(2分)

∴(x1-x22=(x1+x22-4x1x2=(1-b)2-4c=b2-2b+1-4c.

∵x2-x1>1,

∴(x2-x12>1.

∴b2-2b+1-4c>1,即b2>2(b+2c).(6分)

(Ⅱ)g(t)=f(t)-x1=t2+bt+c-(x12+bx1+c)

=(t+x1)(t-x1)+b(t-x1)=(t-x1)(t+x1+b)

=(t-x1)(t+1-x2).(10分)

由0<t<x1,知t-x1<0.

又∵x2-x1>1,

∴1+x1-x2<0,1+t-x2<1+x1-x2<0.

∴(t-x1)(t+1-x2)>0.

∴f(t)>x1.(14分)

单项选择题 案例分析题
单项选择题