问题
解答题
设函数f(x)=loga(x-3a),g(x)=loga
(1)若a=
(2)当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围. |
答案
f(x)-g(x)=loga(x-3a)(x-a)=loga(x2-4ax+3a2)
令h(x)=x2-4ax+3a2,则当0<a<1时,h(x)的对称轴x=2a<a+2
故h(x)在[a+2,a+3]上单调递增,
∴h(x)min=h(a+2)=4-4a,h(x)max=h(a+3)=9-6a(6分)
(1)若a=
,则1 25
≤h(x)≤96 25
,219 25
∴-1<log1 25
≤log219 25
h(x)≤log1 25 1 25
<0,96 25
∴|f(x)-g(x)|<1(9分)
(2)由题意,x-3a>0在[a+2,a+3]上恒成立,则a+2-3a>0⇒a<1
又a>0且a≠1∴0<a<1(12分)
(16分)loga(4-4a)≤1⇒a≤ 4 5 loga(9-6a)≥-1⇒a≤
或a≥9- 57 12 9+ 57 12
故0<a≤
(18分)9- 57 12