问题 解答题

已知-1<a+b<3且2<ab<4,求2a+3b的取值范围.

答案

<2a+3b

a+bab的范围已知,

∴要求2a+3b的取值范围,

只需将2a+3b用已知量a+bab表示出来.

可设2a+3b=xa+b)+yab),用待定系数法求出xy.

设2a+3b=xa+b)+yab),

解得

∴-a+b)<

-2<-ab)<-1.

∴-a+b)-ab)<

即-<2a+3b.

错解:解此题常见错误是:-1<a+b<3,                                                            ①

2<ab<4.                                                                                                           ②

①+②得1<2a<7.                                                                                                 ③

由②得-4<ba<-2.                                                                                         ④

①+④得-5<2b<1,∴-<3b.                                                                ⑤

③+⑤得-<2a+3b.

单项选择题
多项选择题