问题
填空题
已知x>0,y>0,lg2x+lg8y=lg2,则
|
答案
lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,
又由lg2x+lg8y=lg2,
则x+3y=1,
进而由基本不等式的性质可得,
+1 x
=(x+3y)( 1 3y
+1 x
)=2+1 3y
+3y x
≥2+2=4,x 3y
当且仅当x=3y时取等号,
故答案为:4.
已知x>0,y>0,lg2x+lg8y=lg2,则
|
lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,
又由lg2x+lg8y=lg2,
则x+3y=1,
进而由基本不等式的性质可得,
+1 x
=(x+3y)( 1 3y
+1 x
)=2+1 3y
+3y x
≥2+2=4,x 3y
当且仅当x=3y时取等号,
故答案为:4.