问题 选择题
已知a、b、c、d是非零实数,并满足
a+b+c-d
d
=
a+b-c+d
c
=
a-b+c+d
b
=
-a+b+c+d
a
,则代数式
(a+b+c)(b+c+d)(a+b+d)(a+c+d)
abcd
的值是(  )
A.81B.3C.81或1D.3或1
答案

a+b+c-d
d
=
a+b-c+d
c
=
a-b+c+d
b
=
-a+b+c+d
a

a+b+c
d
-
d
d
=
a+b+d
c
-
c
c
=
a+c+d
b
-
b
b
=
b+c+d
a
-
a
a

a+b+c
d
-1=
a+b+d
c
-1=
a+c+d
b
-1=
b+c+d
a
-1,

a+b+c
d
=
a+b+d
c
=
a+c+d
b
=
b+c+d
a

分两种情况:

①当a+b+c+d=0时,

(a+b+c)(b+c+d)(a+b+d)(a+c+d)
abcd
=
(-d)(-a)(-c)(-b)
abcd
=1;

②当a+b+c+d≠0时,

a+b+c
d
=
a+b+d
c
=
a+c+d
b
=
b+c+d
a
=k,

则k=

(a+b+c)+(a+b+d)+(a+c+d)+(b+c+d)
d+c+b+a
=
3a+3b+3c+3d
a+b+c+d
=3,

a+b+c=3d,a+b+d=3c,a+c+d=3b,b+c+d=3a,

(a+b+c)(b+c+d)(a+b+d)(a+c+d)
abcd
=
3d•3a•3c•3b
abcd
=81.

综上可知,代数式

(a+b+c)(b+c+d)(a+b+d)(a+c+d)
abcd
的值是1或81.

故选C.

单项选择题
判断题