问题
填空题
已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为________.
答案
12
∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx≤3(x2+y2+z2),∴a2+4b2+9c2≥ (a+2b+3c)2=
=12.∴a2+4b2+9c2的最小值为12.
已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为________.
12
∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx≤3(x2+y2+z2),∴a2+4b2+9c2≥ (a+2b+3c)2=
=12.∴a2+4b2+9c2的最小值为12.