已知函数f(x)=
(Ⅰ)求证:f(x)的图象关于点(
(Ⅱ)若Sn=f(
(Ⅲ)已知a1=
|
证明:(Ⅰ)在函数f(x)图象上任取一点M(x,y),M关于(
,1 2
)的对称点为N(x1,y1),1 2
∴
,∴
=x+x1 2 1 2
=y+y1 2 1 2
①.x=1-x1 y=1-y1
∵f(x)=
+log21 2
,即y=x 1-x
+log21 2
②.x 1-x
将①代入②得,1-y1=
+log21 2
=1-x1 1-(1-x1)
+log21 2
=1-x1 x1
-log21 2
,x1 1-x1
∴y1=
+log21 2
,∴N(x1,y1)也在f(x)图象上,∴f(x)图象关于点(x1 1-x1
,1 2
)成中心对称.1 2
(直接证f(x)+f(1-x)=1得f(x)图象关于点(
,1 2
)成中心对称,也可给分)(5分)1 2
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时,Sn=f(
)+f(1 n
)+…+f(2 n
)③,Sn=f(n-1 n
)+f(n-1 n
)+••+f(n-2 n
)④1 n
③+④得2Sn=n-1,∴Sn=
.(9分)n-1 2
(Ⅲ)由(Ⅱ)可知,当n≥2时,an=
=1 (
+1)(n-1 2
+1)n 2
=4(4 (n+1)(n+2)
-1 n+1
),1 n+2
∴当n≥2时,Tn=
+4(2 3
-1 3
+1 4
-1 4
+…+1 5
-1 n+1
)=1 n+2
+4(2 3
-1 3
)=2-1 n+2
;4 n+2
∵当n=1时,T1=
也适合上式,∴Tn=2-2 3
(n∈N*).4 n+2
由Tn<λ(Sn+1+1)得,2-
<λ(4 n+2
+1),∴λ>n 2
(2-2 n+2
),即λ>4 n+2
-4 n+2
.8 (n+2)2
令t=
,则2 n+2
-4 n+2
=2t-2t2=-2(t-8 (n+2)2
)2+1 2
,1 2
又∵n∈N*,∴0<t≤
,2 3
∴当t=
时,即n=2时,1 2
-4 n+2
最大,它的最大值是8 (n+2)2
,∴λ∈(1 2
,+∞).(14分)1 2