问题 填空题

设函数f(x)=logax(a>0,且a≠1),若f(x1x2…x2007)=8,则f(x12)+f(x22)+…+f(x20072)=______.

答案

f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072

=loga(x1x2…x20072

=2loga(x1x2…x2007

=2f(x1x2…x2007

=2×8=16

故答案为:16.

单项选择题
单项选择题 A1型题