问题
填空题
设函数f(x)=logax(a>0,且a≠1),若f(x1x2…x2007)=8,则f(x12)+f(x22)+…+f(x20072)=______.
答案
f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072
=loga(x1x2…x2007)2
=2loga(x1x2…x2007)
=2f(x1x2…x2007)
=2×8=16
故答案为:16.