问题
填空题
若函数f(x)=log2(4x-2),则方程f-1(x)=x的解是______.
答案
∵y=log2(4x-2),
∴x=
log 2(2y+2)(y∈R),1 2
∴函数f(x)=log2(4x-2),的反函数为y=
log 2(2x+2)(x∈R).1 2
方程f-1(x)=x即
log 2(2x+2)=x,1 2
即2x+2=22x,⇒x=1
故答案为:x=1
若函数f(x)=log2(4x-2),则方程f-1(x)=x的解是______.
∵y=log2(4x-2),
∴x=
log 2(2y+2)(y∈R),1 2
∴函数f(x)=log2(4x-2),的反函数为y=
log 2(2x+2)(x∈R).1 2
方程f-1(x)=x即
log 2(2x+2)=x,1 2
即2x+2=22x,⇒x=1
故答案为:x=1