问题 填空题

若k1,k2,…k8的方差为4,则3(k1-2),3(k2-2),…3(k8-2)的方差为______.

答案

设k1,k2,…k8的平均数

.
k
,则
1
8
(k1+k2+…k8)=
.
k

  且

1
8
[(k1
.
k
2+(k2-
.
k
2+…(k8-
.
k
2]=4.

又3(k1-2),3(k2-2),…3(k8-2)的平均数为

1
8
[3(k1-2)+3(k2-2)+…3(k8-2)]

=3

.
k
-2.

3(k1-2),3(k2-2),…3(k8-2)的方差为{[3(k1

.
k
)]2+[3(k2-
.
k
)]2+…[3(k8-
.
k
)]2}÷8

=9×

1
8
[(k1
.
k
2+(k2-
.
k
2+…(k8-
.
k
2]

=36

故答案为:36.

单项选择题
单项选择题