问题 填空题

如果5个数x1,x2,x3,x4,x5的方差为7,那么3x1+2,3x2+2,3x3+2,3x4+2,3x5+2,这5个数的方差是______.

答案

∵数据x1,x2,x3,x4,x5的方差是7,

1
5
[(x1-
.
x
2+(x2-
.
x
2+[(x3-
.
x
2+(x4-
.
x
2+(x5-
.
x
2]=7①;

方差=

1
5
[(3x1+2-3
.
x
-2)2+(3x2+2-3
.
x
-2)2+(3x3+2-3
.
x
-2)2+(3x4+2-3
.
x
-2)2+(3x5+2-3
.
x
-2)2]

=

1
5
[9(x1-
.
x
2+9(x2-
.
x
2+9(x3-
.
x
2+9(x4-
.
x
2+9(x5-
.
x
2]

=

9
5
[(x1-
.
x
2+(x2-
.
x
2+[(x3-
.
x
2+(x4-
.
x
2+(x5-
.
x
2]②

把①代入②得,方差是:7×9=63.

故答案为:63.

单项选择题 A3/A4型题
问答题 简答题