问题
填空题
给出下列四个命题: ①“向量
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3]; ④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象. 其中真命题的序号是______.(请写出所有真命题的序号) |
答案
“
•a
>0”还包括b
与a
同向(此时向量b
,a
的夹角为0)的情况,故①错误;b
由于函数f(x)=lgx,在区间(0,+∞)上是凸增的,故对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
)>x1+x2 2
,故②正确;f(x1)+f(x2) 2
当f(x)=x2-3x+4与g(x)=2x-3时,|f(x)-g(x)|=|x2-5x+7|,∵在区间[2,3]上|x2-5x+7|∈[0,1],故③正确;
先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,可以得到y=f′(-x-1)的图象,故④错误
故答案为:②③