问题
解答题
已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3 f(n),n∈N*. (1)求数列{an}的通项公式; (2)设bn=
|
答案
(本题满分14分)
(1)由题意得
,解得log3(2a+b)=1 log3(5a+b)=2
,…(3分)a=2 b=-1
∴f(x)=log3(2x-1)
∴an=3log3(2n-1)=2n-1,n∈N*…(6分)
(2)由(1)得bn=
,2n-1 2n
∴Tn=
+1 21
+3 22
+…+5 23
+2n-3 2n-1
①2n-1 2n
Tn= 1 2
+1 22
+…+3 23
+2n-5 2n-1
+2n-3 2n
②2n-1 2n+1
两式相减可得
Tn=1 2
+1 21
+2 22
+…+2 23
+2 2n-1
-2 2n 2n-1 2n+1 =
+(1 21
+1 21
+…+1 22
+1 2n-2
)-1 2n-1 2n-1 2n+1
=
-3 2
-1 2n-1
.2n-1 2n+1
∴Tn=3-
-1 2n-2
=3-2n-1 2n
,…(10分)2n+3 2n
设f(n)=
,n∈N*,则由2n+3 2n
=f(n+1) f(n)
=2n+5 2n+1 2n+3 2n
=2n+5 2(2n+3)
+1 2
≤1 2n+3
+1 2
<11 5
得f(n)=
,n∈N*随n的增大而减小,Tn随n的增大而增大.2n+3 2n
∴当n→+∞时,Tn→3
又Tn<m(m∈Z)恒成立,∴mmin=3…(14分)