问题 选择题
已知函数f(x)=loga(ax2-x+
1
2
)
[1,
3
2
]
上恒正,则实数a的取值范围是(  )
A.(
1
2
8
9
)
B.(
3
2
,+∞)
C.(
1
2
8
9
)
(
3
2
,+∞)
D.(
1
2
,+∞)
答案

特值法:令a=2,f(x)=log2(2x2-x+

1
2
),x∈[1,
3
2
]
时,2x2-x+
1
2
≥ 
3
2
>1
,∴函数f(x)=loga(ax2-x+
1
2
)
[1,
3
2
]
上恒正;故选项A不正确

a=

2
3
f(x)=log
2
3
(
2
3
x
2
-x+
1
2
)
,x∈[1,
3
2
]
时,0<
2
3
x
2
-x+
1
2
<1
,∴函数f(x)=loga(ax2-x+
1
2
)
[1,
3
2
]
上恒正;故选项B不正确

a=

3
2
f(x)=log
3
2
(
3
2
x
2
-x+
1
2
)
,x∈[1,
3
2
]
时,
3
2
x
2
-x+
1
2
≥1
,∴函数f(x)=loga(ax2-x+
1
2
)
[1,
3
2
]
上恒大于等于零;故选项D不正确

故选C

单项选择题
单项选择题