问题
选择题
已知数列{an)的通项公式为an=
|
答案
由通项公式an=
,得1+(-1)n+1 2
当n=1时,a1=
=1,1+(-1)1+1 2
当n=2时,a1=
=0,1+(-1)2+1 2
当n=3时,a1=
=1,1+(-1)3+1 2
当n=4时,a1=
=0,1+(-1)4+1 2
即数列{an}的前4项依次为1,0,1,0.
故选A.
已知数列{an)的通项公式为an=
|
由通项公式an=
,得1+(-1)n+1 2
当n=1时,a1=
=1,1+(-1)1+1 2
当n=2时,a1=
=0,1+(-1)2+1 2
当n=3时,a1=
=1,1+(-1)3+1 2
当n=4时,a1=
=0,1+(-1)4+1 2
即数列{an}的前4项依次为1,0,1,0.
故选A.