问题 解答题
数列{an} (n∈N*)为递减的等比数列,且a1和a3为方程logm(5x-4x2)=0(m>0且m≠1)的两个根.
(1)求数列{an}的通项公式;
(2)记bn=
-1
(2n+1)log2a2n
,求数列{bn}的前n项和Sn
答案

(1)方程logm(5x-4x2)=0(m>0且m≠1)即 5x-4x2=1,即4x2-5x+1=0.

利用韦达定理可得a1 +a3=

5
4
,a1 •a3=
1
4
.再由数列{an} (n∈N*)为递减的等比数列可得a1 =1,a3=
1
4
,故公比为
1
2

∴an=

1
2n-1

(2)∵bn=

-1
(2n+1)log2a2n
=
-1
(2n+1)(1-2n)
=
1
(2n+1)(2n-1)
=
1
2
1
2n-1
-
1
2n+1
).

∴数列{bn}的前n项和Sn=

1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+(
1
5
-
1
7
)
+…+(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)=
n
2n+1

配伍题
单项选择题 A1型题