问题
解答题
数列{an} (n∈N*)为递减的等比数列,且a1和a3为方程logm(5x-4x2)=0(m>0且m≠1)的两个根. (1)求数列{an}的通项公式; (2)记bn=
|
答案
(1)方程logm(5x-4x2)=0(m>0且m≠1)即 5x-4x2=1,即4x2-5x+1=0.
利用韦达定理可得a1 +a3=
,a1 •a3=5 4
.再由数列{an} (n∈N*)为递减的等比数列可得a1 =1,a3=1 4
,故公比为1 4
.1 2
∴an=
.1 2n-1
(2)∵bn=
=-1 (2n+1)log2a2n
=-1 (2n+1)(1-2n)
=1 (2n+1)(2n-1)
(1 2
-1 2n-1
).1 2n+1
∴数列{bn}的前n项和Sn=
[(1-1 2
)+(1 3
-1 3
)+(1 5
-1 5
)+…+(1 7
-1 2n-1
)=1 2n+1
(1-1 2
)=1 2n+1
.n 2n+1