问题
填空题
函数y=log
|
答案
由-x2+6x-5>0解得,1<x<5,即函数的定义域为(1,5)
函数y=log
(-x2+6x-5)可看作y=log1 2
t,和t(x)=-x2+6x-5的复合.1 2
由复合函数的单调性可知只需求t(x)的单调递增区间即可,
而函数t(x)是一个开口向下的抛物线,对称轴为x=-
=3,6 2×(-1)
故函数t(x)在(-∞,3]上单调递增,由因为函数的定义域为(1,5),
故函数y=log
(-x2+6x5)的单调递减区间是(1,3].1 2
故答案为(1,3].