问题
解答题
已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N). (1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式; (2)设bn=
|
答案
(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N)∴a2=6,a3=12(2分)
当n≥2时,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,
∴an-a1=2[n+(n-1)+…+3+2],
∴an=2[n+(n-1)+…+3+2+1]=2
=n(n+1)(5分)n(n+1) 2
当n=1时,a1=1×(1+1)=2也满足上式,
∴数列{an}的通项公式为an=n(n+1)(6分)
(2)bn=
+1 an+1
++1 an+2
=1 a2n
+1 (n+1)(n+2)
++1 (n+2)(n+3)
=1 2n(2n+1)
-1 (n+1)
+1 (n+2)
-1 (n+2)
++1 (n+3)
-1 2n
=1 (2n+1)
-1 (n+1)
=1 (2n+1)
=n 2n2+3n+1
(8分)1 (2n+
)+31 n
令f(x)=2x+
(x≥1),则f′(x)=2-1 x
,当x≥1时,f'(x)>0恒成立1 x2
∴f(x)在x∈[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3
即当n=1时,(bn)max=
(11分)1 6
要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
>bn恒成立,1 6
则须使t2-2mt+
>(bn)max=1 6
,1 6
即t2-2mt>0,
对∀m∈[-1,1]恒成立,
∴
,解得,t>2或t<-2,t2-2t>0 t2+2t>0
∴实数t的取值范围为(-∞,-2)∪(2,+∞)(14分)