问题
解答题
设数列{an}满足a1=1,3(a1+a2+…+an)=(n+2)an,求通项an.
答案
设数列{an}的前n项和为Sn,
则由3(a1+a2+…+an)=(n+2)an可得3Sn=(n+2)an,
∴3Sn-1=(n+1)an-1(n≥2),两式相减,得
3an=(n+2)an-(n+1)an-1,
∴(n-1)an=(n+1)an-1,即
=an an-1
(n≥2).n+1 n-1
∴
=a2 a1
,3 1
=a3 a2
,4 2
=a4 a3
,…,5 3
=an an-1
(n≥2),n+1 n-1
将以上各式相乘,得
=an a1
,又a1=1满足该式式,n(n+1) 2
∴an=
(n∈N*).n(n+1) 2