问题
填空题
已知数列{an}的前n项和Sn=n2+1(n∈N*),则它的通项公式是______.
答案
由题意知:当n=1时,a1=s1=2,
当n≥2时,Sn=n2+1①
sn-1=(n-1)2+1②,所以利用①-②得:an=sn-sn-1=2n-1.
故答案为:an=2,,n=1 2n-1,n≥2
已知数列{an}的前n项和Sn=n2+1(n∈N*),则它的通项公式是______.
由题意知:当n=1时,a1=s1=2,
当n≥2时,Sn=n2+1①
sn-1=(n-1)2+1②,所以利用①-②得:an=sn-sn-1=2n-1.
故答案为:an=2,,n=1 2n-1,n≥2