问题
解答题
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
|
答案
(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3)
即an=an-1+2n-1(n≥3)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1.
(Ⅱ)由于bnf(n)=
-2n-11 (2n+1)(2n+1+1)
=
-1 2 (2n+1+1)-(2n+1) (2n+1)(2n+1+1)
=
(1 2
-1 2n+1
).1 2n+1+1
故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
[(1 2
-1 1+2
)+(1 1+22
-1 1+22
)+…+(1 1+23
-1 2n+1
)]1 2n+1+1
=
(1 2
-1 1+2
) <1 2n+1+1
-1 2
=1 1+2
.1 6