问题 解答题
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1).
答案

(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3)

即an=an-1+2n-1(n≥3)

∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2

=2n-1+2n-2+…+22+5

=2n+1(n≥3)

检验知n=1、2时,结论也成立,故an=2n+1.

(Ⅱ)由于bnf(n)=

1
(2n+1)(2n+1+1)
-2n-1

=

1
2
-
(2n+1+1)-(2n+1)
(2n+1)(2n+1+1)

=

1
2
(
1
2n+1
-
1
2n+1+1
).

故Tn=b1f(1)+b2f(2)+…+bnf(n)

=

1
2
[(
1
1+2
-
1
1+22
)+(
1
1+22
-
1
1+23
)+…+(
1
2n+1
-
1
2n+1+1
)]

=

1
2
(
1
1+2
-
1
2n+1+1
)  <
1
2
-
1
1+2
=
1
6

单项选择题 案例分析题
单项选择题