问题
解答题
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
|
答案
(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3)
即an=an-1+2n-1(n≥3)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1.
(Ⅱ)由于bnf(n)=
1 |
(2n+1)(2n+1+1) |
=
1 |
2 |
(2n+1+1)-(2n+1) |
(2n+1)(2n+1+1) |
=
1 |
2 |
1 |
2n+1 |
1 |
2n+1+1 |
故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
1 |
2 |
1 |
1+2 |
1 |
1+22 |
1 |
1+22 |
1 |
1+23 |
1 |
2n+1 |
1 |
2n+1+1 |
=
1 |
2 |
1 |
1+2 |
1 |
2n+1+1 |
1 |
2 |
1 |
1+2 |
1 |
6 |