问题 填空题

,设{an}是正项数列,其前n项和Sn满足:4Sn=(an-1)(an+3),则数列{an}的通项公式an=______.

答案

∵4Sn=(an-1)(an+3),

∴4sn-1=(an-1-1)(an-1+3),

两式相减得整理得:2an+2an-1=an2-an-12

∵{an}是正项数列,

∴an-an-1=2,

∵4Sn=(an-1)(an+3),

令n=1得a1=3,

∴an=2n+1,

故答案为:2n+1.

单项选择题
问答题