问题 解答题
已知两数列{an},{bn}(其中bn>0,且bn≠1),满足a1=2,b1=
3
2,
an+1=
1
2
(an+
bn
an
)
bn+1=
1
2
(bn+
1
bn
)
(n∈N+)

(I)求证:an>bn
(II)求证:数列{an}的单调递减且an+1<1+
1
2n
答案

证明:(I)先证bn>1.∵bn>0,bn≠1,∴bn+1=

1
2
(bn+
1
bn
)>
1
2
×2
bn×
1
bn
=1,又b1=
3
2
>1
,∴bn>1.

再证an>bn.①a1=2,b1=

3
2
a1b1>1;

②假设m=k时命题成立,即ak>bk>1,

则ak+1-bk+1=

1
2
(ak+
bk
ak
)-
1
2
(bk+
1
bk
)>
1
2
(ak+
1
ak
)-
1
2
(bk+
1
bk
)
=
1
2
(ak+bk)(1-
1
akbk
)>
0.

∴ak+1>bk+1

所以n+k+1时命题也成立.

综合①②可得ak>bk

(II)an+1-an=

1
2
(an+
bn
an
)-an=
1
2
(
bn
an
-an)

∵bn<an,∴

bn
an
<1,an>1,∴an+1-an<0.

故数列{an}单调递减.

an+1=

1
2
(an+
bn
an
)
1
2
(an+1)

an+1-1<

1
2
(an-1)<…<
1
2n
(a1-1)

又a1-1=1,∴an+1-1<

1
2n

an+1<1+

1
2n

选择题
单项选择题