问题
解答题
已知两数列{an},{bn}(其中bn>0,且bn≠1),满足a1=2,b1=
(I)求证:an>bn (II)求证:数列{an}的单调递减且an+1<1+
|
答案
证明:(I)先证bn>1.∵bn>0,bn≠1,∴bn+1=
(bn+1 2
)>1 bn
×21 2
=1,又b1=bn× 1 bn
>1,∴bn>1.3 2
再证an>bn.①a1=2,b1=
,a1>b1>1;3 2
②假设m=k时命题成立,即ak>bk>1,
则ak+1-bk+1=
(ak+1 2
)-bk ak
(bk+1 2
)>1 bk
(ak+1 2
)-1 ak
(bk+1 2
)=1 bk
(ak+bk)(1-1 2
)>0.1 akbk
∴ak+1>bk+1
所以n+k+1时命题也成立.
综合①②可得ak>bk.
(II)an+1-an=
(an+1 2
)-an=bn an
(1 2
-an),bn an
∵bn<an,∴
<1,an>1,∴an+1-an<0.bn an
故数列{an}单调递减.
∵an+1=
(an+1 2
)<bn an
(an+1),1 2
∴an+1-1<
(an-1)<…<1 2
(a1-1).1 2n
又a1-1=1,∴an+1-1<
,1 2n
即an+1<1+
.1 2n