已知An(an,bn)(n∈N*)是曲线y=ex上的点,a1=a,Sn是数列{an}的前n项和,且满足:Sn2=3n2an+
(1)证明:数列(
(2)确定a的取值集合M,使得当a∈M时,数列{an}是单调递增数列; (3)证明:当a∈M时,弦AnAn+1(n∈N*)的斜率随n单调递增. |
(I)当n≥2时,由已知得Sn2-Sn-12=3n2an,
因为an=Sn-Sn-1≠0,所以Sn+Sn-1=3n2①,
于是Sn+1+Sn=3(n+1)2②,
由②-①得an+1+an=6n+3③,
于是an+2+an+1=6n+9④,
由④-③得an+2-an=6⑤,
An(an,bn)(n∈N*)是曲线y=ex上的点,所以bn=ean
所以
=ean+2-an=e6,是常数,即数列{bn+2 bn
}(n≥2)是常数数列.bn+2 bn
(II)由①有S2+S1=12,所以a2=12-2a、由③有a3+a2=15,a4+a3=21,所以a3=3+2a,a4=18-2a.
而⑤表明:数列{a2k}和{a2k+1}分别是以a2,a3为首项,6为公差的等差数列,
所以a2k=a2+6(k-1),a2k+1=a3+6(k-1),a2k+2=a4+6(k-1)(k∈N*),
数列{an}是单调递增数列⇔a1<a2且a2k<a2k+1<a2k+2对任意的k∈N*成立.
⇔a1<a2且a2+6(k-1)<a3+6(k-1)<a4+6(k-1)
⇔a1<a2<a3<a4⇔a<12-2a<3+2a<18-2a
⇔
<a<9 4
.15 4
即所求a的取值集合是M={a|
<a<9 4
}.15 4
(III)弦AnAn+1的斜率为kn=
=bn+1-bn an+1-an
,ean+1-ean an+1-an
任取x0,设函数f(x)=
,则f(x)=ex-ex0 x-x0
,ex(x-x0)-(ex-ex0) (x-x0)2
记g(x)=ex(x-x0)-(ex-ex0),则g'(x)=ex(x-x0)+ex-ex=ex(x-x0),
当x>x0时,g′(x)>0,g(x)在(x0,+∞)上为增函数,
当x<x0时,g′(x)<0,g(x)在(-∞,x0)上为减函数,
所以x≠x0时,g(x)>g(x0)=0,从而f′(x)>0,
所以f(x)在(-∞,x0)和(x0,+∞)上都是增函数.
由(II)知,a∈M时,数列{an}单调递增,
取x0=an,因为an<an+1<an+2,所以kn=
<ean+1-ean an+1-an
.ean+2-ean an+2-an
取x0=an+2,因为an<an+1<an+2,所以kn+1=
>ean+1-ean+2 an+1-an+2
.ean-ean+2 an-an+2
所以kn<kn+1,即弦AnAn+1(n∈N*)的斜率随n单调递增.