设数列{an}满足:a1=2,an+1=an+
(I)证明:an>
(II)令bn=
|
(1)证法一:当n=1时,a1=2>
,不等式成立,2×1+1
假设n=k时,ak>
成立(2分),2k+1
当n=k+1时,
=a 2k+1
+a 2k
+2>2k+3+1 a 2k
>2(k+1)+1.(5分)1 a 2k
∴n=k+1时,ak+1>
时成立2(k+1)+1
综上由数学归纳法可知,an>
对一切正整数成立(6分)2n+1
证法二:由递推公式得
=a 2n
+2+a 2n-1
,1 a 2n-1
=a 2n-1
+2+a 2n-2 1 a 2m-2
=a 22
+2+a 21
(2分)1 a 21
上述各式相加并化简得
=a 2n
+2(n-1)+a 21
+…+1 a 21
>22+2(n-1)=2n+2>2n+1+1+1(n≥2)(4分)1 a 2n-1
又n=1时,an>
显然成立,故an>2n+1
(n∈N*)(6分)2n+1
(2)解法一:
=bn+1 bn
=(1+an+1 n an n+1
)1 a 2n
<(1+n n+1
)1 2n+1
(8分)n n+1
=
=2(n+1) n (2n+1) n+1
=2 n(n+1) 2n+1
<1(10分)(n+
)2-1 2 1 4 n+ 1 2
又显然bn>0(n∈N*),故bn+1<bn成立(12分)
解法二:
-b 2n+1
=b 2n
-a 2n+1 n+1
=a 2n n
(1 n+1
+a 2n
+2)-1 a 2m
(8分)a 2n n
=
(2+1 n+1
-1 a 2m
)<a 2n n
(2+1 n+1
-1 2n+1
)(10分)2n+1 n
=
(1 n+1
-1 2n+1
)<01 n
故bn+12<bn2,因此bn+1<bn(12分)