问题 解答题

已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)

(1)求a3

(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*

(3)求证:an+1>an≥1(n∈N*).

答案

(1)由a3a1-a22=t(t-1)和a1=1,a2=t

∴a3=2t2-t…(4分)

(2)由an+2an-an+12=tn(t-1),(n∈N*

得an+1an-1-an2=tn-1(t-1)(n≥2),

再由上两式相除得到:∴an+2an-an+12=tan+1an-1-tan2

∴an(an+2+tan)=an+1(an+1+tan-1

an+2+tan
an+1
=
an+1tan-1
an

{

an+2+tan
an+1
}为常数列

an+2+tan
an+1
=
a3+ta1
a2

而a3+ta1=2t2

an+2+tan
an+1
=2t.

即an+2-2tan+1+tan=0.…(9分)

(3)由t>1知:an+2an>an+12≥0

∴an+2an>0

故an+2与an同号

而a1=1>0,a2=t>0.

故an>0.

a

n
+2an
a2n+1

an+2
an+1
an+1
an

an+1
an
an
an-1
>…>
a2
a1
=t>1

∴an+1>an

∴an≥1

∴an+1>an≥1.…(14分)

选择题
单项选择题