问题
解答题
已知函数f(x)=log4(ax2+2x+3)
(1)若f(1)=1,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
答案
解:(1)∵f(x)=log4(ax2+2x+3)且f(1)=1,
∴log4(a●12+2×1+3)=1a+5=4
a=﹣1
可得函数f(x)=log4(﹣x2+2x+3)
∵真数为﹣x2+2x+3>0﹣1<x<3
∴函数定义域为(﹣1,3)
令t=﹣x2+2x+3=﹣(x﹣1)2+4 可得:
当x∈(﹣1,1)时,t为关于x的增函数;
当x∈(1,3)时,t为关于x的减函数.
∵底数为4>1
∴函数f(x)=log4(﹣x2+2x+3)的单调增区间为(﹣1,1),单调减区间为(1,3)
(2)设存在实数a,使f(x)的最小值为0,由于底数为4>1,
可得真数t=ax2+2x+3≥1恒成立,且真数t的最小值恰好是1,
即a为正数,且当x=﹣=﹣
时,t值为1.
所以a=
所以a=,使f(x)的最小值为0.