问题
填空题
函数f(x)由表定义:若a0=5,an+1=f(an),n=0,1,2,…,则a2009=______
|
答案
∵a0=5,an+1=f(an),n=0,1,2,
∴a1=f(a0)=f(5)=2;
a2=f(a1)=f(2)=1;
a3=f(a2)=f(1)=4;
a4=f(a3)=f(4)=5;
a5=f(a4)=f(5)=2;
∴递推数列a0=5,an+1=f(an)是周期为4的数列.
∴a2009=f(a2008)=f(5)=2.
故答案为:2