设log2log
|
由log2log
log1 2
x=log3log2
log1 3
y=log5log3
log1 5
z=0得;5
=1,log log x 2 1 2
=1,log log y 3 1 3
=1,log log z 5 1 5
得
=log x 2
,1 2
=log y 3
,1 3
=log z 5
;1 5
解得:x=
,y=4 2
,z=6 3 10 5
所以z<x<y
故答案为z<x<y
设log2log
|
由log2log
log1 2
x=log3log2
log1 3
y=log5log3
log1 5
z=0得;5
=1,log log x 2 1 2
=1,log log y 3 1 3
=1,log log z 5 1 5
得
=log x 2
,1 2
=log y 3
,1 3
=log z 5
;1 5
解得:x=
,y=4 2
,z=6 3 10 5
所以z<x<y
故答案为z<x<y