问题
填空题
已知数列{an}满足a1=1,(2n+5)an+1-(2n+7)an=4n2+24n+35(n∈N*),则数列{an}的通项公式为______.
答案
由题意(2n+5)an+1-(2n+7)an=4n2+24n+35,
可以得到(2n+5)an+1-(2n+7)an=(2n+5)(2n+7),
即
-an+1 2(n+1)+5
=1,an 2n+5
所以数列{
}是以an 2n+5
=a1 7
为首项,以1为公差的等差数列.1 7
则有
=an 2n+5
+(n-1)×1,1 7
所以an=
.(2n+5)(7n-6) 7
故答案为:an=
.(2n+5)(7n-6) 7