问题 填空题

已知数列{an}满足a1=1,(2n+5)an+1-(2n+7)an=4n2+24n+35(n∈N*),则数列{an}的通项公式为______.

答案

由题意(2n+5)an+1-(2n+7)an=4n2+24n+35

可以得到(2n+5)an+1-(2n+7)an=(2n+5)(2n+7),

an+1
2(n+1)+5
-
an
2n+5
=1,

所以数列{

an
2n+5
}是以
a1
7
=
1
7
为首项,以1为公差的等差数列.

则有

an
2n+5
=
1
7
+(n-1)×1,

所以an=

(2n+5)(7n-6)
7

故答案为:an=

(2n+5)(7n-6)
7

判断题
多项选择题