问题
解答题
数列{an}满足a1=2,an+1=
(1)设bn=
(2)设cn=
|
答案
(1)∵an+1=
(n∈N*),2n+1an (n+
)an+2n1 2
∴
-2n+1 an+1
=n+2n an 1 2
∵bn=2n an
∴bn+1-bn=n+1 2
∴bn=b1+(b2-b1)+…+(bn-bn-1)=b1+n2-1 2
∵bn=
,a1=2,2n an
∴b1=1
∴bn=
;n2+1 2
(2)由(1)知,an=
,∴an+1=2n+1 n2+1
,2n+2 (n+1)2+1
∴cn=
=1 n(n+1)an+1
[1 2
+1 2n+1
-1 n×2n
]1 (n+1)×2n+1
∴Sn=
×1 2
+
(1-1 22
)1 2n 1- 1 2
[1 2
-1 2
]=1 (n+1)×2n+1
[1-(1 2
)n+1×1 2
]n+2 n+1
∵(
)n+1×1 2
=(n+2 n+1
)n+1×(1+1 2
)得到递减,1 n+1
∴(
)n+1×1 2
≤(n+2 n+1
)1+1×1 2
=1+2 1+1 3 8
∴
≤5 16
[1-(1 2
)n+1×1 2
]<n+2 n+1
,即1 2
≤Sn<5 16
.1 2