问题
解答题
数列{an}满足a1=2,an+1=
(1)设bn=
(2)设cn=
|
答案
(1)∵an+1=
2n+1an | ||
(n+
|
∴
2n+1 |
an+1 |
2n |
an |
1 |
2 |
∵bn=
2n |
an |
∴bn+1-bn=n+
1 |
2 |
∴bn=b1+(b2-b1)+…+(bn-bn-1)=b1+
n2-1 |
2 |
∵bn=
2n |
an |
∴b1=1
∴bn=
n2+1 |
2 |
(2)由(1)知,an=
2n+1 |
n2+1 |
2n+2 |
(n+1)2+1 |
∴cn=
1 |
n(n+1)an+1 |
1 |
2 |
1 |
2n+1 |
1 |
n×2n |
1 |
(n+1)×2n+1 |
∴Sn=
1 |
2 |
| ||||
1-
|
1 |
2 |
1 |
2 |
1 |
(n+1)×2n+1 |
1 |
2 |
1 |
2 |
n+2 |
n+1 |
∵(
1 |
2 |
n+2 |
n+1 |
1 |
2 |
1 |
n+1 |
∴(
1 |
2 |
n+2 |
n+1 |
1 |
2 |
1+2 |
1+1 |
3 |
8 |
∴
5 |
16 |
1 |
2 |
1 |
2 |
n+2 |
n+1 |
1 |
2 |
5 |
16 |
1 |
2 |