问题
解答题
已知
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
(1)写出y=f (x)的表达式; (2)判断数列{an}的增减性; (3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2<
|
答案
(1)∵
2=(a
)2+1=3,2
•a
=b
×2
-1×2=-1,2 2
∴f (x)=x2+3x-1.
(2)∵3an=
+3an-1-1+1,∴3(an-an-1)=a 2n-1
≥0,a 2n-1
∵a1=1≠0,∴an>an-1
∴数列{an}单调递增.
(3)由3an=an-1(an-1+3)得出
=1 an-1+3
,an-1 3an
∴bn=
=1 an+3
=an 3an+1
=a 2n 3anan+1
=3an+1-3an 3anan+1
-1 an
.1 an+1
∴Sn=(
-1 a1
)+(1 a2
-1 a2
)+…+(1 a3
-1 an
)1 an+1
=1-
.1 an+1
由(2)知an单调递增,且a1=1,∴a2=
,an+1≥a2=4 3
.4 3
∴0<
≤1 an+1
,∴-3 4
≤-3 4
<0,1 an+1
∴
≤Sn<1.1 4
故不存在n1使Sn1≥1,也不存在n2,使Sn2<
.1 4