问题 解答题
数列{an}满足:a1=1,an+1=
an+2
an+1

(I)求证:1<an<2(n∈N*,n≥2),
(Ⅱ)令bn=|an-
2
|
(1)求证:{bn}是递减数列;
(2)设{bn}的前n项和为Sn,求证:Sn
2(2
2
-1)
7
答案

(Ⅰ)a1=1,a2=

1+2
1+1
=
3
2

(1)n=2时,1<a2=

3
2
<2,∴n=2时不等式成立;

(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,

ak+1=1+

1
ak+1

4
3
ak+1
3
2

∴n=k+1时不等式成立,

由(1)(2)可知对n∈N*,n≥2都有1<an<2;

(Ⅱ)(1)

bn+1
bn
=
|an+1-
2
|
|an-
2
|
=
|
an+2
an+1
-
2
|
|an-
2
|

=

1
|an+1|
|an+2-
2
an-
2
|
|an-
2
|

=

1
|an+1|
|an(1-
2
)+
2
(
2
-1)|
|an-
2
|
=
|
2
-1|
|an+1|

|
2
-1|
|an+1|
2
-1
2
<1,

∴{bn}是递减数列;

(2)由(1)知:

bn+1
bn
2
-1
2
,∴bn+1
2
-1
2
bn

bn

2
-1
2
bn-1<(
2
-1
2
)2bn-2<…<(
2
-1
2
)n-1b1
=(
2
-1)(
2
-1
2
)n-1

所以Sn=b1+b2+b3+…+bn<(

2
-1)[1+
2
-1
2
+(
2
-1
2
)2+…+(
2
-1
2
)n-1]

=(

2
-1)
1-(
2
-1
2
)n
1-
2
-1
2

=

2(
2
-1)(3+
2
)
7
[1-(
2
-1
2
)n]
2(2
2
-1)
7

判断题
单项选择题