问题
解答题
数列{an}满足:a1=1,an+1=
(I)求证:1<an<2(n∈N*,n≥2), (Ⅱ)令bn=|an-
(1)求证:{bn}是递减数列; (2)设{bn}的前n项和为Sn,求证:Sn<
|
答案
(Ⅰ)a1=1,a2=
=1+2 1+1
,3 2
(1)n=2时,1<a2=
<2,∴n=2时不等式成立;3 2
(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,
ak+1=1+
,1 ak+1
∴
<ak+1<4 3
,3 2
∴n=k+1时不等式成立,
由(1)(2)可知对n∈N*,n≥2都有1<an<2;
(Ⅱ)(1)
=bn+1 bn
=|an+1-
|2 |an-
|2 |
-an+2 an+1
|2 |an-
|2
=
•1 |an+1| |an+2-
an-2
|2 |an-
|2
=
•1 |an+1|
=|an(1-
)+2
(2
-1)|2 |an-
|2
,|
-1|2 |an+1|
又
<|
-1|2 |an+1|
<1,
-12 2
∴{bn}是递减数列;
(2)由(1)知:
<bn+1 bn
,∴bn+1<
-12 2
bn,
-12 2
则bn<
bn-1<(
-12 2
)2bn-2<…<(
-12 2
)n-1b1=(
-12 2
-1)(2
)n-1,
-12 2
所以Sn=b1+b2+b3+…+bn<(
-1)[1+2
+(
-12 2
)2+…+(
-12 2
)n-1]
-12 2
=(
-1)2 1-(
)n
-12 2 1-
-12 2
=
[1-(2(
-1)(3+2
)2 7
)n]<
-12 2
.2(2
-1)2 7