问题 填空题
数列a0,a1,a2,…满足:a0=
3
an+1=[an]+
1
{an}
([an]与{an}分别表示an的整数部分和小数部分),则a2008=______.
答案

a0=

3

∴[a0]=1,{a0}=

3
-1

a1=[a0] +

1
{a0}
=1+
1
3
-1
=2+
3
-1
2

a2=[a1]+

1
{a1}
= 4+(
3
-1)

a3=[a2]+ 

1
{a2}
=5+ 
3
-1
2

a4=[a3]+

1
{a3}
=7+ (
3
-1)

a5=[a4]+

1
{a4}
= 8+
3
-1
2

a6=[a5]+

1
{a5}
=10+
3
-1
2

a2n+1=2+3n+

3
-1
2

  a2n+2=4+3n+(

3
-1)

a2008a2×1003+2=4+3×1003+(

3
-1)=3012+
3

故答案为3012+

3

单项选择题
单项选择题