问题
解答题
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{an}中,b1=1,点P(bn,
bn+1)在直线x﹣y+2=0上.
(Ⅰ) 求数列{an},{bn}的通项公式an和bn;
(Ⅱ) 设cn=anbn,求数列{cn}的前n项和Tn.
答案
解:(Ⅰ)∵an是Sn与2的等差中项,
∴Sn=2an﹣2,①
∴a1=S1=2a1﹣2,解得a1=2
n≥2时,Sn﹣1=2an﹣1﹣2,②
①﹣②可得:an=2an﹣2an﹣1,
∴an=2an﹣1(n≥2),即数列{an}是等比数列
∴an=2n,
∵点P(bn,bn+1)在直线x﹣y+2=0上,
∴bn﹣bn+1+2=0,
∴bn+1﹣bn=2,即数列{bn}是等差数列,
又b1=1, ∴bn=2n﹣1;
(Ⅱ)∵cn=(2n﹣1)2n,
∴Tn=a1b1+a2b2+anbn=1×2+3×22+5×23+…+(2n﹣1)2n,
∴2Tn=1×22+3×23+…+(2n﹣3)2n+(2n﹣1)2n+1,
∴﹣Tn=1×2+(2×22+2×23+…+2×2n)﹣(2n﹣1)2n+1,
即:﹣Tn=1×2+(23+24+…+2n+1)﹣(2n﹣1)2n+1,
∴Tn=(2n﹣3)2n+1+6.