问题
填空题
设函数f(x)=lg(x2+ax-a-1),给出下列命题:
(1)f(x)有最小值;
(2)当a=0时,f(x)的值域为R;
(3)当a>0时,f(x)在区间[2,+∞)上有单调性;
(4)若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥-4.
则其中正确的命题是______.(写上所有正确命题的序号).
答案
∵u=x2+ax-a-1的最小值为-
(a2+4a+4)≤01 4
∴函数f(x)的值域为R为真命题,故(2)正确;
但函数f(x)无最小值,故(1)错误;
若f(x)在区间[2,+∞)上单调递增,
则-
≤2,且4+2a-a-1>0a 2
解得a>-3,故(3)正确,(4)错误;
故答案为:(2)(3).