已知等差数列{an}的前n项和为Sn,且S5=30,a1+a3=8,n∈N*.
(I)求数列{an}的通项公式an;
(Ⅱ)记bn=2an,求{bn}的前n项和为Tn.
(I)设等差数列{an}的公差为d,
∵S5=30,∴
,解得a1=2,d=2,5a1+
d=305×4 2 2a1+2d=8
∴an=a1+(n-1)d=2+(n-1)×2=2n;
(Ⅱ)由(Ⅰ),可知an=2n.
∵bn=2an,∴bn=4n,
又
=bn+1 bn
=4(n∈N*),4n+1 4n
∴{bn}是以4为首项,4为公比的等比数列,
则Tn=b1+b2+…+bn=4+42+43+…+4n=
=4(1-4n) 1-4
-4n+1 3
.4 3