问题
填空题
在数列{an}中,a1=1,a2=
|
答案
∵a1=1,a2=
,1 2
=2 an
+1 an+1 1 an-1
∴数列{
}是以1为首项,以d=1 an
-1 a2
=1为公差的等差数列1 a1
∴
=1+n-1=n1 an
∴an=1 n
∵bn=anan+1=
=1 n(n+1)
-1 n 1 n+1
∴b1+b2+…+bn=1-
+1 2
-1 2
+…+1 3
-1 n 1 n+1
=1-
=1 n+1 n n+1
故答案为:n n+1