问题 填空题
在数列{an}中,a1=1,a2=
1
2
2
an
=
1
an+1
+
1
an-1
(n≥2,n∈N+),令bn=anan+1,则数列{bn}的前n项和为______.
答案

∵a1=1,a2=

1
2
2
an
=
1
an+1
+
1
an-1

∴数列{

1
an
}是以1为首项,以d=
1
a2
-
1
a1
=1为公差的等差数列

1
an
=1+n-1=n

an=

1
n

∵bn=anan+1=

1
n(n+1)
=
1
n
-
1
n+1

∴b1+b2+…+bn=1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-

1
n+1
=
n
n+1

故答案为:

n
n+1

解答题
阅读理解与欣赏